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An essential part of variational Monte Carlo or Green’s function Monte Carlo~GFMC! algorithms is the trial
wave function. In the case of particles obeying Fermi statistics, this wave function is antisymmetric and cannot
be interpreted directly as a probability distribution, thereby making calculations difficult. Some progress can be
made in GFMC algorithms, however, by requiring the trial wave function to have the same ‘‘fixed’’ nodes as
the variational function. The sensitivity of the energy to changes in the nodal surface has remained a significant
unresolved issue for two reasons:~a! the many-dimensional nodal surface is hard to quantify or visualize and
~b! it has been difficult to vary this surface in a controlled fashion. As a first step toward gaining further
information, we have developed a method of quantifying the many-dimensional nodal surface by creating and
visually characterizing a related surface. The related surface is the surface of the local volume in which any
given particle can range without changing the overall sign of the wave function, and this surface is mapped for
different configurations and wave functions. A comparison of these surfaces allows us to characterize the local
contributions to the nodal surface of a particular wave function and thereby visually differentiate between
different types of wave functions. We show that introducing backflow correlations into the trial wave function
results in a constrained volume with the undesired effect of significantly slowing down GFMC calculations.
This study demonstrates that advanced visualization methods can serve a useful role in the process of algorithm
development rather than just in the presentation of results.@S1063-651X~96!00505-3#

PACS number~s!: 02.70.Lq

I. INTRODUCTION

A major focus of theoretical physics in general and many-
body theory in particular is the development of computa-
tional methods for accurate and efficient first-principles cal-
culations of themacroscopicproperties of quantum systems
from themicroscopicinteractions between particles in the
system. Liquid3He has long served as the testing ground for
diverse many-body calculational schemes because many of
its properties are more experimentally accessible than other
fermion systems such as nuclear matter@1–8#. A simple
state-independent interaction provides an accurate descrip-
tion of the Hamiltonian of bulk3He, yet this interaction is
strong enough to produce large correlations between the at-
oms.

Serving initially only as a ‘‘benchmark’’ for other more
approximate calculations, the quantum Monte Carlo method
has proven itself as one of the most powerful tools of the
trade. The development and refinement of both variational
and Green’s function Monte Carlo methods and their appli-
cation to helium systems stand as major achievements in
computational science, while demonstrating the ability of
large-scale computation to alter the direction of theoretical
physics.

The application of quantum Monte Carlo methods to ex-
tended boson systems such as liquid4He, though requiring
significant care and sophistication, has been straightforward
compared to the arduous efforts aimed at applying these
methods to fermion systems such as liquid3He. Since only a
positive probability distribution can be represented as a list
of particle coordinates—the key results of a quantum Monte

Carlo ~QMC! calculation are sets of configurations of par-
ticle coordinates drawn from a specified distribution—
difficulties arise due to the antisymmetric nature of the ferm-
ion wave function. These difficulties are well known in the
many areas of physics that have applied the quantum Monte
Carlo method, from atomic and condensed matter physics
back to the nuclear matter problem that gave rise to the
many-body discipline@8,9#. The variational Monte Carlo
method avoids the problem by dealing with distributions of
particle coordinates drawn from a distribution proportional to
the squareof the wave function. In Green’s function Monte
Carlo ~GFMC! calculations, however, the wave function it-
self must be sampled and the statistical error increases expo-
nentially as the calculation proceeds.

An important, widely used variation of the GFMC method
is the fixed-node approximation@10,11# in which the wave
function is sampled in a domain of constant sign, within the
nodal surface of an appropriate trial wave function. While
the fixed-node approximation yields a rigorous upper bound
with arbitrarily small statistical error, there is noa priori way
of estimating how far from the ground-state energy eigen-
value the fixed-node energy may be. Furthermore, for wave
functions with different nodal surfaces, the energies are very
similar and sometimes statistically indistinguishable. Conse-
quently, one is left asking whether or not the energy is sen-
sitive to the details of the nodal surface. To date, there has
been no clear way to estimate how much the nodal surface
changes from one wave function parametrization to another.
Therefore, prior to the present work, one could only guess
whether the small energy shifts are due to small changes in
the nodal surface of the wave function—in which case we
would say that the energy is rather sensitive to the nodes—or
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due to large changes in the nodes, leading to a conclusion
that the energy is in fact rather insensitive to the nodes of the
trial wave function.

What limits an even greater use of the quantum Monte
Carlo method in physics and chemistry is sometimes its
nearly prohibitive computational load. Consequently, in or-
der to make these methods more accessible to the scientific
community, our research focus has shifted from the applica-
tion of exact but inefficient implementations of the QMC
method in a variety of strongly correlated systems to a much-
needed further refinement and parallel implementation of al-
gorithms that can take advantage of advances in high perfor-
mance computing technologies. Until recently, there has
been very little application of scientific visualization in quan-
tum Monte Carlo studies of3He since there are only a lim-
ited number of ways to display the principleresult of our
computation, that the experimental value for the energy per
atom in the liquid is essentially reproduced by theory,
E522.4 K. Surprising even ourselves, however, we have
learned that visualization methods an be effectively applied
to uncover previously unimagined paths toward more effi-
cient algorithms by allowing us to ‘‘see’’ the bottlenecks in
the processof the computation. This paper presents the re-
sults of our computational and visualization efforts in a study
of the ground-state properties of liquid3He.

II. BASICS OF THE QUANTUM MONTE CARLO
METHOD

The quantum Monte Carlo method encompasses several
numerical methods that seek to directly solve the Schro¨-
dinger equation

HC05EC0 ~1!

to obtain the ground-state wave functionC0 for a given
HamiltonianH with energy eigenvalueE, without recourse
to uncontrolled approximations. A nonrelativistic system of
N helium atoms which interact via static two-body forces
only has a Hamiltonian of the form

H5
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The pair interactionv(r i j ) for the helium systems is taken to
be the HFDHE2 interaction of Azizet al. @12#, which yields
excellent agreement with experiment@1,13#.

For two reasons, accurate variational calculations yielding
a good ground-state trial function are an essential prelimi-
nary to practical and reliable GFMC calculations. In the first
place, improved trial wave functions significantly reduce the
statistical error by initiating the iterative calculation closer to
the ground state. Moreover, an improved importance func-
tion acts to suppress population fluctuations. A physically
motivated trial wave function of modified Feenberg form
@14# is

CT5c3D, ~3!
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andD is the determinant that builds the required antisymme-
try of the wave function. This ansatz includes explicit two-
and three-body correlations@4#. The two-body correlation
u(r i j ) is an appropriately scaled solution of an Euler-
Lagrange equation obtained from Fermi hypernetted chain
methods@15# or the solution of a parametrized two-body
Schrödinger-like equation@16#. The triplet correlations are
parametrized as

j~r !5expF2S r2r T
wT

D 2G . ~6!

Different choices for the determinantD in Eq. ~3! would be
expected to result in different nodal surfaces. A simple
choice forD is a Slater determinant of plane wave orbitals,
which would be most appropriate for a noninteracting Fermi
gas

D5det~exp@ ikW i•rW j # !. ~7!

An alternative choice builds in momentum-dependent corre-
lations to incorporate ‘‘backflow’’ effects@5#

D5detH expF ikW i•S rW j1(
lÞ j

h~r i j !rW l j D G J , ~8!

where

h~r !5lBexpF2S r2r B
wB

D 2G1
lB8

r 3
. ~9!

For the purposes of this paper, since we use the same two-
and three-body correlations, we will distinguish the choice of
wave function by simply referring to either a Slater wave
function@Eqs.~3! and~7!# or a backflow wave function@Eqs.
~3! and ~8!#. In either case, the wave function is required to
be periodic, so that all correlations are smoothed to zero at a
distance equal to half the side of the simulation volume
rmax. Since the correlations that minimize the variational en-
ergy for liquid 3He are relatively short ranged, this finite-size
adaptation has no real effect on the magnitude of the corre-
lations. Longer-range correlations may be studied with larger
numbers of particles in increasingly larger periodic boxes.
The calculations that we have done to date, however, have
concentrated on 54 particles. Finite-size effects, though not
negligible, are small enough that the fundamental physics
may be displayed by these quantum simulations@17#.

In variational calculations, the expectation value of the
Hamiltonian, an upper bound to the ground-state energy
E0 , may be evaluated as
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~10!

The second form of the integral is easily calculated using the
method of Metropoliset al. @18#, usually with a low variance
answer sinceHCT(R)/CT(R) is nearly constant ifCT(R) is
close to the true ground-state wave function. A good trial
wave function minimizes Eq.~10! and its variance.

The optimum set of variational parameters@1# obtained
for a system of 54 particles at the experimental equilibrium
density for the backflow trial function above are
lT52180, r T50.66s, wT50.50s, lB50.14, r B50.74s,
wB50.54s, and lB850.15s3, where s52.556 Å. In the
Monte Carlo calculations, no approximations are necessary
in evaluating the variational upper bound, subject to the ca-
veat that the calculation refers to a finite number of particles
with periodic boundary conditions. As the calculation pro-
ceeds, lists of particle coordinates, known as configurations,
are written on disk. These configurations may be analyzed to
compute other properties besides the energy. They also serve
as input to Green’s function Monte Carlo calculations, which
iterate these configurations towards the true ground state.

The GFMC method@19,20# is based upon the fact that the
Schrödinger equation is equivalent to a diffusion equation in
imaginary time. The GFMC algorithm is implemented by
choosing a set of points$R% in configuration space and iter-
ating the equation

Cn11~R!5ETE G~R,R8!Cn~R8!dR8. ~11!

Although the Green’s function is not known analytically, it
can be sampled exactly through the use of an ancillary ran-
dom walk. The GFMC method has been applied to macro-
scopic bosonic systems, such as liquid4He, with great suc-
cess. It has also been applied to few-body fermion systems
where elaborate sampling schemes are possible because the
dimensionality of the system is small@9#.

Exact GFMC treatment of many-body fermion systems,
however, has proven to be very elusive. The requirement that
the wave function be antisymmetric is a global property that
is difficult to incorporate successfully into the diffusion al-
gorithm, which is local in character. The fact that the wave
function is not positive definite introduces a statistical error
that grows exponentially as Eq.~11! is iterated. Fermion al-
gorithms typically introduce two positive populations, the
difference of which corresponds to the desired antisymmetric
wave function

CA5C12C2. ~12!

A wide set of fermion GFMC algorithms can be viewed in
the framework of mirror potentials as shown by Carlson and
Kalos@21# and applied to3He by Panoff and Carlson@1#. By
introducing two coupled equations

@H~R!1c~R!C1~R!#C2~R!5EC2~R!, ~13!

@H~R!1c~R!C2~R!#C1~R!5EC1~R! ~14!

FIG. 1. One-body density matrixn(r ) in 3He for two choices of
variational wave function. Dashed line, Jastrow plus triplets plus
Slater determinant; solid line, Jastrow plus triplets plus backflow.
All distances are in units ofs52.556 Å.

FIG. 2. One-body density matrixn(r ) in 3He for two choices of
variational wave function, larger-r detail. Dashed line, Jastrow plus
triplets plus Slater determinant; solid line, Jastrow plus triplets plus
backflow. All distances are in units ofs52.556 Å.
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and making an appropriate choice of the mirror potentials
c(R)C6(R), it is possible, in principle, to retain two stable
and distinct positive populations forC1 andC2 such that
the difference is a solution to the original Schro¨dinger equa-
tion.

The fixed-node approximation, whose development pre-
dates the mirror potential description, is a limiting case of
Eqs.~13! and~14!, corresponding to the limitc(R)→`. The
diffusion of the two populations is restricted thus to two
isolated regions in configuration space. This prescription
yields an upper bound to the true ground-state energy and
leads to the lowest-energy wave function with the same
nodes as the trial function. At each iteration, for each particle
in a configuration, the Green’s function is sampled in a do-
main of constant sign inC. Enigmatically, when using back-
flow wave functions as the generating and importance func-
tion, we have been forced to make these domains much
smaller to guarantee a constant sign. This results in a slower
calculation requiring many more steps in imaginary time

than when using a Slater wave function. Different-sized do-
mains would seem to be strong evidence that the nodal sur-
faces of the two wave functions could be very different. In
Table I, taken from Ref.@1#, results for the energy per par-
ticle obtained at the experimental equilibrium density for
several different trial wave functions of3He are collected.
What is readily apparent is that the energy results are similar
for different choices of wave function. Energies that are so
similar would seem to suggest that the nodal surfaces could
actually be quite similar, at least in some average sense. Par-
ticular choice for the functional forms of Jastrow, triplet, and
backflow correlations, along with the values for the param-
eters in these functions, may be quite different while yielding
very similar variational energies. However, other properties
of the system at the variational level could still be very dif-
ferent@17#. Identifying some features that readily distinguish
one choice of wave function from another has been a major
goal of this work.

Both variational and GFMC calculations yield configura-

FIG. 3. Topological plot show-
ing the lower half of the nodal
volume generated from a Slater
wave function.

TABLE I. Results of Monte Carlo calculations for 543He atoms in a periodic box atrs350.273, where
s52.556 Å. All energies are in K per particle. Results are from Ref.@1#.

Method E* b Energy ^T& ^V&

Variational 22.1360.02 12.2260.03 214.3560.02
GFMC ~mirror potential! 22.30 60.0 22.2460.04 12.3360.14 214.5760.14
GFMC ~mirror potential! 22.35 70.0 22.3260.07 12.2260.20 214.5460.20
GFMC ~mirror potential! 22.40 70.0 22.2760.03 12.4260.16 214.6960.16
GFMC ~mirror potential! 22.35 80.0 22.3060.04 12.3460.14 214.6460.14
GFMC ~fixed node! 22.3760.01 12.2860.04 214.6560.03

53 5453VISUALIZATION OF THE LOCAL CONTRIBUTION TO THE . . .



tions, that is, lists of particle coordinates drawn from a prob-
ability density that is proportional toC2 for the VMC algo-
rithm and to C itself for the GFMC algorithm. These
configurations may be analyzed to determine other properties
of the systems. For instance, Table I also gives the kinetic
energy^T& and potential energŷV& at equilibrium density.
For every case, the kinetic energy per particle is between 12
and 12.5 K. For a variety of wave functions, there is actually
very little percent change in the kinetic or potential energies
calculated separately. As the wave function is improved,
with an assumed greater degree of overlap with the ground
state as higher-order correlations are included, there remains
the sensitive cancellation of quantities of roughly the same
magnitude.

These same configurations may be further analyzed
@3,17,21# to give the one-body density matrixn(rW) and the
momentum distributionn(kW ) at k vectors contained within
the simulation box. The one-body density matrix is the Fou-
rier transform of the momentum distribution

n~rW !5E eik
W
•rWn~kW !dkW

5K C~r 1 ,r 2 , . . . ,r i1rW, . . . ,r n!

C~r 1 ,r 2 , . . . ,r i , . . . ,r n
L ~15!

and is a measure of the change in the wave function for a
given displacementr . The expectation value in Eq.~15! is
evaluated simply by moving particlei by an amountr and
averaging the ratio of the wave functions over an ensemble
of configurations. Two different methods may be used in this

analysis. The first method computesn(r ) by moving particle
i in the configurations a random amount giving the best val-
ues forn(k) at specifick vectors. Alternatively, one deter-
minesn(r ) by moving particlei in increments ofdr along a
prescribed direction, yielding precise values ofn(r ) at small
r .

III. VISUAL CHARACTERIZATION

A. Motivation

With the seemingly paradoxical results of Slater and
backflow wave functions yielding similar energies but re-
quiring very different restrictions on the region of the itera-
tion of the Green’s function, the question of just how differ-
ent the wave functions really are arises. Are these wave
functions actually very similar or are they different in some
fundamental but yet unseen way? To answer this question,
we want a method to distinguish wave functions quickly,
without having to perform a complete and expensive~hun-
dreds of CPU hours on a supercomputer! energy calculation.
In particular, we would like to understand how two wave
functions can appear to have similar nodal surfaces, at least
in some average sense, while having effects that would im-
ply very different nodal surfaces. Since the one-body density
matrix n(r ), as indicated above, is itself a measure of the
change in the wave function for a given particle displace-
ment r , this seems to be a reasonable place to start in com-
paring properties of wave functions.

The one-body density matricesn(r ) computed for both
Slater and backflow variational wave functions after more
than 500 000 passes, as shown in Fig. 1, are incredibly simi-

FIG. 4. Topological plot show-
ing the upper half of the nodal
volume generated from a Slater
wave function.
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lar. The region ofn(r ) near the first zero crossing is enlarged
in Fig. 2. As with the various energy results, there is very
little evidence that the two wave functions differ from each
other significantly. These curves suggest that the two wave
functions might have very similar nodal surfaces since their
zero crossings—in some sense a measure of the average dis-
tance to the nodal surface—are nearly the same. If this were
to be the only information, one would be led to conclude
again that the small but significant energy changes in Table I
are due to subtle, perhaps imperceivable, changes in the
nodal surface of the two wave functions. Then(r ) for each
wave function was calculated by averaging over a few hun-
dred random directions for every particle in a configuration
and averaging over many such independent and well-
separated configurations. Since we used the second method
described above—moving a given particle in incrementsdr
along a prescribed direction—we found that we could simul-
taneously capture information about two other quantities. We
first computed the average distance a particle could be dis-
placed without changing the sign of the overall wave func-
tion, averaging over all particles, all directions, and all con-
figurations. We also computed the average of the smallest
distance a particle could be displaced before changing the
overall sign of the wave function, averaging over all particles
and configurations only.

The results of these calculations are again paradoxical.
The average distances a particle could move in any direction
in a domain of constant sign are almost statistically indistin-
guishable for Slater and backflow wave functions

^r &Slater52.260.1 s,

^r &backflow52.160.1 s.

The distances here are in units ofs52.566 Å. This is com-
pletely consistent with the results displayed in Fig. 2, which
shows a very slight reduction in the value ofr for the first
zero crossing for the backflow curve compared to the Slater
curve.

On the other hand, the average of the minimum distance a
particle could be displaced and still result in a sign change in
a given configuration for backflow and Slater wave functions
differs by more than two standard errors:

^rmin&Slater50.9060.05s,

^rmin&backflow51.1560.05s.

This result is consistent with the empirical result that con-
structing a spherical domain of constant sign in a fixed-node
GFMC algorithm requires a much smaller radius for back-
flow wave functions than for Slater wave functions. Our nu-
merical ‘‘picture’’ remained cloudy, despite hundreds of
thousands of samples ofr and the averaging ofn(r ). We
turned to visualization techniques as a means of extracting
useful and insightful information from all of the calculations
we have performed rather than simply averaging like quan-
tities.

B. Method

Improving the efficiency of the fixed-mode implementa-
tion of the GFMC algorithm requires a deeper appreciation

FIG. 5. Topological plot show-
ing the lower half of the nodal
volume generated from a back-
flow wave function.
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of the subtleties of the many-body nodal surface. The algo-
rithm itself, however, is built on expanding the Green’s func-
tion for a single particle in a domain of constant sign around
that particle. Examining the structure of the volume in which
a single particle can be displaced without changing the over-
all sign of the wave function seems reasonable. The informa-
tion to construct this volume can fall naturally out of the
calculational scheme already described for computingn(r ).

For a given configuration, a random particle in the 54-
particle system is chosen and the coordinate system is shifted

so the chosen particle is placed at the origin, keeping intact
the periodic boundary conditions imposed on the system.
The surface of the volume in which that particle can move
from the new origin without changing the overall sign of the
wave function is then created by moving the chosen particle
in small steps in prespecified directions. Successive steps are
taken in a specific direction, the wave function being recal-
culated at each step and tested to see if it has flipped its sign
and become negative. Once this sign change has occurred,
the point is recorded and the particle ceases to march further
in that direction. The particle then is returned to its origin
and begins its march in the next designated direction. After
the particle has been marched in all of the prespecified direc-

FIG. 6. Topological plot show-
ing the upper half of the nodal
volume generated from a back-
flow wave function.

FIG. 7. SURFERsurface plot of the same volume as in Fig. 4. FIG. 8. SURFERsurface plot of the same volume as in Fig. 6.

5456 53A. C. CALDER, M. R. CURRY, R. M. PANOFF, AND Y. J. WONG



tions, it is then intentionally marched in the direction of all
other particles. All of the recorded points at which the wave
function switched sign ultimately make up the surface of the
local region of constant sign of the wave function for a single
particle. Our method then is to construct such surfaces and to
compare the various surfaces so constructed for configura-
tions corresponding to similar and dissimilar wave functions.
Different methods of generating the direction vectors were
tried, including both randomly and uniformly distributed di-

rections. In each case, we also searched specifically in the
directions from the chosen central particle to every other
particle in the configuration. While the surface of these do-
mains of constant sign of the wave function is not the same
as the many-body nodal surface, the surface is intimately
related to nodal surface because the nodal surface completely
determines its characteristics. At this point, the problem
shifts to one of finding an appropriate way of visualizing
such surfaces for purposes of comparison. We will refer to
these surfaces as ‘‘nodal volumes.’’

IV. RESULTS AND DISCUSSION

We were able to evaluate several different graphics pack-
ages and platforms on which the software ran, yielding in-
formation about the relative merits of different visualizing
methods. Our approach was to start with the simplest graph-
ics package available to us and then to go to more advanced
packages, applying what we learned along the way. We be-
gan withSURFER, a graphics package with multiple graphical
modes running on a personal computer. Typical contour
plots of the nodal volumes generated byTOPO, the topo-
graphical plot mode ofSURFER, are shown in Figs. 3–6. The
differences between the two surfaces would appear as differ-
ences in the deformations of the contours from those of a
perfectly spherical surface. Plots for different particles of
configurations for the Slater wave functions showed marked
similarities. As seen in Figs. 3 and 4, Slater wave functions
are characterized by relatively smooth contours on the sur-
face, that is, contours that are rather evenly spaced and some-
what symmetrical. In most cases the Slater surfaces have an
overall continuous appearance. In contrast, as typified by
Figs. 5 and 6, the surfaces generated from the backflow wave
function have rather constricted and rough contours, suggest-
ing a more rapidly changing wave function. Backflow-
related surfaces from different points and configurations
were also more sharply varying, one from another, in com-
parison to Slater plots.

FIG. 9. WAVEFRONT rendering
of the surface of a nodal volume
generated from a Slater wave
function.

FIG. 10.WAVEFRONT rendering of the surface of a nodal volume
generated from a Slater wave function. Same volume viewed from
the same perspective as in Fig. 4.
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Since certain features of the topological plots depend
strongly on the random orientation of the nodal volume, an
alternative visualization scheme was desired that permits
looking at a three-dimensional rendering of the whole vol-
ume. Accordingly, we then studied images created bySURF

mode ofSURFER, which generates an isosurface through a set
of nonredundant points~which we had!. Although we were
still restricted to looking at one hemisphere at a time, the
interpolated surfaces served quite well to train us to interpret
the topological plots. Representative plots for a surface of a
Slater nodal volume and a backflow nodal volume are given
in Figs. 7 and 8, respectively. These plots, along with the
topological counterparts, led us to describe the backflow vol-
umes to be decidedly more constricted than Slater volumes.
TheSURFplots also suggested that some of the sharp features
in the TOPO plots of the backflow nodal volumes were pos-
sibly sharp peaks to go along with the sharp crevices. Be-
causeSURF was producing an isosurface smoothed over a
rectangular grid, we could not be sure that some of these
features were not artifacts fromSURF.

We then considered a full three-dimensional rendering of
the surfaces using two graphics packages namedGALAXY

andWAVEFRONT. These packages offered the possibility of
real time rotation of the full volume, which allowed for
easier comparison and differentiation of various surfaces.
Our results fromWAVEFRONT are also shown in Figs. 9–12.
The images in Figs. 9 and 10 correspond to Slater nodal
volumes, and those in Figs. 11 and 12 correspond to back-
flow nodal volumes. Figures 10 and 12, for comparison, cor-
respond to exactly the same perspectives as the topology
plots in Figs. 4 and 6. The most notable feature, present in
the backflow images and nearly absent in the Slater views,
are sharp spikes and deep localized sink holes, as in Figs. 11
and 12. With these views, taken together, one can immedi-
ately ‘‘see’’ how two surfaces could have nearly the same
average radius while having sharply different minimum cross
sections. Physically, the constricted volume surrounding a
single particle is related to the greater localization of the

atom in the liquid with the backflow correlations than with-
out them. The sharply constricted volumes associated with
the backflow wave function also explain the smaller domains
that were needed to implement the fixed-node GFMC algo-
rithm. Furthermore, in the computation of^rmin& it was
nearly always the case that the direction of^rmin& for the
Slater nodal volume was consistent with the direction of an-
other particle. For the backflow volumes, more than a third
of the time the direction of̂ rmin& was essentially random,
suggesting a subtle, correlated, many-body effect.

FIG. 11. WAVEFRONT render-
ing of the surface of a nodal vol-
ume generated from a backflow
wave function.

FIG. 12.WAVEFRONT rendering of the surface of a nodal volume
generated from a backflow wave function. Same volume viewed
from the same perspective as in Fig. 6.
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Having viewed many such computer generated volumes
and noting the similarities for such volumes generated from
the same wave function, we are confident in our character-
izations, at least with regard to comparing Slater-type wave
functions with wave functions incorporating backflow in the
determinant.

V. IMPACT ON FUTURE DIRECTIONS IN THE
QUANTUM MONTE CARLO METHOD

A key result of this work is the striking visual evidence
that the local contributions to the many-body nodal surface,
as measured by the volumes studied here, arevery different
for Slater and backflow-type wave functions. We would con-
clude that it has taken a large change in the nodal structure to
produce rather small changes in the energy and almost unde-
tectable changes in the other ground-state properties. As a
result, rather than looking for small changes in the param-
eters in the wave function to achieve any further improve-
ment, we need to explore new families of parametrizations.

The quantum Monte Carlo method has achieved the repu-
tation of being accurate, and with appropriate refinements,
key implementations of its fundamental algorithms can also
be efficient. Consequently, variational and Green’s function
Monte Carlo methods are no longer relegated to the service
role of benchmarks for approximate calculational methods,
but they can provide otherwise inaccessible insight to the
microscopic structure of matter.

With the nodal volume visualization that have come out
of the present work, we have identified a principle bottleneck
in improving one important implementation of the GFMC
method, namely, the fixed-node approximation. While back-
flow correlations yield a lower variance calculation, they do
so at the considerable expense of restricting the size of the
domains in which the Green’s function may be expanded.
This had gone previously unexplained, because the only
available information prior to this work incorporated aver-
ages over many volumes instead of examining the morphol-

ogy of a single volume, and these averages have been mis-
leading. Current implementations to the fixed-node GFMC
method estimate the distance to the nearest part of the nodal
surface only in the directions of other particles. Our work
shows that this method might be improved by considering
directions away from particles as well.

For the many-fermion problem, a trade-off can now be
tested as to the overall efficiency of slow, but low variance
quantum simulations versus fast but high variance simula-
tions. A goal we have is to correlate morphology with ener-
gies: we seek a wave function with a nodal structure result-
ing in a low variance calculation, a lower energy, and a less
constrained domain of constant sign.

We end by returning to a point of emphasis from our
introduction: the visualizations we have explored are impor-
tant because they have helped us understand an important
piece of theprocessto improve an algorithm and not just in
presenting aresult. Efficient use and integration of a variety
of high performance computing platforms enabled this work
to be done sooner than it otherwise could have been done
conventionally, with more insight than we ourselves imag-
ined, resulting in a better understanding of the physics of
strongly correlated quantum systems and the algorithms that
are used to study them.
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